同学们学习了用字母表示数和解简易方程,还开始试着运用简易方程来解决一些实际问题。
列方程解应用题是一个难点,这一部分内容融入了等式的性质,以及四则运算各部分的关系,有助于同学们对所学的算术知识进行巩固和加深理解。
如何应用方程来解应用题呢?同学们不妨看看下面的一些技巧。
一、首先是审题,确定未知数
审题,理解题意。就是全面分析已知数与已知数、已知数与未知数的关系。特别要把牵涉到的一些概念术语弄清,如同向、相向、增加到、增加了等,并确立未知数。即用x表示所求的数量或有关的未知量。
在小学阶段同学们遇到的应用题并不十分复杂,一般只需要直接把要求的数量设为未知数,
如:“学校图书馆里科技书的本数比文艺书的2倍多47本,科技书有495本,文艺书有多少本?”在这道题目中只有“文艺书的数量”不知道,所以只要设“文艺书的数量”为未知数x就可以了。
二、寻找等量关系,列出方程是关键
“含有未知数的等式称为方程”,因而“等式”是列方程必不可少的条件。所以寻找等量关系是解题的关键。
如上题中“科技书得本数比文艺书的2倍多47本”这是理解本题题目意思的关键。
仔细审题发现“文艺书本数的2倍加上47本就是科技书的本数”故本题的等量关系为:文艺书本数的2倍+47=科技书的本数。上题中的方程可以列为:“2x+47=495”
三、解方程,求出未知数得值
解方程时应当注意把等号对齐。
如:
2x+47=495
2x+47-47=495-47←应将“2x”看做一个整体。
2x=448
2x÷2=448÷2
x=224
四、检验也是列方程解应用题中必不可少的
检验并写出答案.检验时,一是要将所求得的未知数的值代入原方程,检验方程的解是否正确;二是检查所求得的未知数的值是否符合题意,不符合题意的要舍去,保留符合题意的解.
1)将求得的方程的解代入原方程中检验。如果左右两边相等,说明方程解正确了。如上题的检验过程为:
检验:把x=224代入原方程。
左边=2×224+47右边=495
=495
因为左边=右边,所以x=224是方程2x+47=495的解。
2)文艺书本数的2倍+47=科技书的本数
将224代入以上等式,等式成立。故所求得的未知数的值符合题意。
总之,以上几点技巧都是列方程解应用题的关键环节的技巧,只要大家利用这些技巧加强练习,就一定能闯过列方程解应用题这道关。
在千变万化的应用问题中,我们若能抓住以上几点,以不变应万变,则问题就可迎刃而解。
解方程应用题练习
1、甲有书的本数是乙有书的本数的3倍,甲、乙两人平均每人有82本书,求甲、乙两人各有书多少本。
解:设乙有书x本,则甲有书3x本
X+3X=82×2
2、一只两层书架,上层放的书是下层的3倍,如果把上层的书搬60本到下层,那么两层的书一样多,求上、下层原来各有书多少本.
解:设下层有书X本,则上层有书3X本
3X-60=X+60
3、有甲、乙两缸金鱼,甲缸的金鱼条数是乙缸的一半,如从乙缸里取出9条金鱼放人甲缸,这样两缸鱼的条数相等,求甲缸原有金鱼多少条.
解:设乙缸有X条,则甲缸有1/2X条
X-9=1/2X+9
4、汽车从甲地到乙地,去时每小时行60千米,比计划时间早到1小时;返回时,每小时行40千米,比计划时间迟到1小时.求甲乙两地的距离.
解:设计划时间为X小时
60×(X-1)=40×(X+1)
5、新河口小学的同学去种向日葵,五年级种的棵数比四年级种的3倍少10棵,五年级比四年级多种62棵,两个年级各种多少棵?
解:设四年级种树X棵,则五年级种(3X-10)棵
(3X-10)-X=62
6、熊猫电视机厂生产一批电视机,如果每天生产40台,要比原计划多生产6天,如果每天生产60台,可以比原计划提前4天完成,求原计划生产时间和这批电视机的总台数.
解:设原计划生产时间为X天
40×(X+6)=60×(X-4)
7、甲仓存粮32吨,乙仓存粮57吨,以后甲仓每天存人4吨,乙仓每天存人9吨.几天后,乙仓存粮是甲仓的2倍?
解:设X天后,乙仓存粮是甲仓的2倍
(32+4X)×2=57+9X
8、一把直尺和一把小刀共1.9元,4把直尺和6把小刀共9元,每把直尺和每把小刀各多少元?
解:设直尺每把x元,小刀每把就是(1.9—x)元
4X+6×(1.9—X)=9
9、甲、乙两个粮仓存粮数相等,从甲仓运出130吨、从乙仓运出230吨后,甲粮仓剩粮是乙粮仓剩粮的3倍,原来每个粮仓各存粮多少吨?
解:设原来每个粮仓各存粮X吨
X-130=(X-230)×3
10、师徒俩要加工同样多的零件,师傅每小时加工50个,比徒弟每小时多加工10个.工作中师傅停工5小时,因此徒弟比师傅提前1小时完成任务.求两人各加工多少个零件.
解:设两人各加工X个零件
X/(50-40)=X/50+5-1
11、买2.5千克苹果和2千克橘子共用去13.6元,已知每千克苹果比每千克橘子贵2.2元,这两种水果的单价各是每千克多少元?
解:设橘子每千克X元,则苹果每千克(X+2.2)元
2.5×(X+2.2)+2X=13.6
12、买4支钢笔和9支圆珠笔共付24元,已知买2支钢笔的钱可买3支圆珠笔,两种笔的价钱各是多少元?
解:设钢笔每支X元,则圆珠笔每支2X/3
4X+9×2X/3=24
13、一个两位数,个位上的数字是十位上数字的2倍,如果把十位上的数字与个位上的数字对调,那么得到的新两位数比原两位数大36.求原两位数.
解:设十位上数字为X,则个位上的数字为2X,这个原两位数为(10X+2X)
10×2X+X=(10X+2X)+36
14、一个两位数,十位上的数字比个位上的数字小1,十位上的数字与个位上的数字的和是这个两位数的0.2倍.求这个两位数.
解:设个位数字为X,则十位数字为(X-1)
X+(X-1)=[X+10×(X-1)]×0.2
15、有四只盒子,共装了45个小球.如变动一下,第一盒减少2个;第二盒增加2个;第三盒增加一倍;第四盒减少一半,那么这四只盒子里的球就一样多了.原来每只盒子中各有几个球?
解:设现在每只盒子中各有x个球,原来各盒中球的个数分别为(x—2)个、(x+2)个、(x÷2)个、2x个
(x—2)+(x+2)+(x÷2)+2x=45
16、25除以一个数的2倍,商是3余1,求这个数.
解:设这个数为X
(25-1)÷2X=3
17、甲、乙分别从相距18千米的A、B两地同时同向而行,乙在前甲在后.当甲追上乙时行了1.5小时.乙车每小时行48千米,求甲车速度.
解:设甲车速度为X小时/小时
(X-48)×1.5=18
18、甲、乙两车同时由A地到B地,甲车每小时行30千米,乙车每小时行45千米,甲车先出发2小时后乙车才出发,两车同时到达B地.求A、B两地的距离.
解:设A、B两地的距离为X千米
(X-30×2)/30=X/45
19、师徒俩加工同一种零件,徒弟每小时加工12个,工作了3小时后,师傅开始工作,6小时后,两人加工的零件同样多,师傅每小时加工多少个零件.
解:设师傅每小时加工X个零件
6X=12×(3+6)
20、有甲、乙两桶油,甲桶油再注入15升后,两桶油质量相等;如乙桶油再注人145升,则乙桶油的质量是甲桶油的3倍,求原来两桶油各有多少升?
解:设甲桶原来有X升油,则乙桶原来有(X-15)升油
X+15+145=3X
21、一个工程队由6个粗木工和1个细木工组成.完成某项任务后,粗木工每人得200元,细木工每人工资比全队的平均工资多30元.求细木工每人得多少元.
解:设细木工每人得X元
(200×6+X)/(6+1)=X-30