欢迎登陆博智教育官网
菏泽博智教育 菏泽博智教育 菏泽博智教育
首页> 最新资讯

小学数学,奥数年龄问题,这几道例题方法解析!

发布时间:2024-08-22
年龄问题是奥数中常见的问题,年龄问题主要是研究两人或者多人之间的年龄变化和关系的问题。

小学奥数中的年龄问题主要有以下三类,分别是和差问题,差倍问题,和倍问题。
面老师针对这三类问题分别作出了分析和总结,希望对小朋友们的学习有所帮助!
和差型年龄问题解题规律
1、解答和差类年龄问题的关键是两人的年龄差是一个不变的量。
2、选择适当的数作为标准,设法把若干个不相等的数变为相等的数(某些复杂的应用题没有直接告诉我们两个数的和与差,可以通过转化求它们的和与差,再按照和差问题的解法来解答。)
3、这类题型的基本数量关系是: 
(和-差)÷2=小数小数+差=大数(和-小数=大数) 
(和+差)÷2=大数 大数-差=小数(和-大数=小数)
例题1
案例分析:姐姐今年13岁,弟弟今年9岁,当姐弟俩岁数的和是40岁时,两人各应该是多少岁?
解题思路:
①年龄差不会变,今年的岁数差13-9=4,几年后也不会改变。
②几年后岁数和是40,岁数差是4,转化为和差问题。
③则几年后,姐姐的岁数:(40+4)/2=22,弟弟的岁数:(40-4)/2=18,所以答案是9年后。
差倍型年龄问题
差倍型年龄问题是指两个数量之间的差和他们之间的倍数关系,随着一个或者两个数量的增加或者减少而发生改变的一类应用题。 
差倍型年龄问题解题规律
1、两人的年龄差不变2、两人年龄的倍数每年都会改变,越往后倍数越小3、变倍问题牢固树立抓“不变量”的思想,  变倍问题中的不变量,一般有三类,如下:
(1)“甲是乙的2倍,甲是丙的3倍”——不变量是甲 
(2)“甲是乙的3倍,甲给乙2,甲变成乙的2倍”
——不变量是甲、乙之和
(3)“甲是乙的3倍,甲、乙都减少2,甲变成乙的4倍”
——不变量是甲、乙之差(同增同减差不变)
4、这类题的数量关系是:
差÷(倍数-1)=小数(1倍数)
小数×倍数=大数 小数+差=大数 
例题2
小军今年8岁,爸爸今年34岁,几年后,爸爸的年龄的小军的3倍?
解题思路:
①岁差不会变,今年的岁数差点34-8=26,到几年后仍然不会变。
②差÷(倍数-1)=小数(1倍数)
根据公式算出26/(3-1)=13,几年后小军的年龄是13X1=13岁,爸爸的年龄是13X3=39岁。
③13-8=4,所以应该是5年后。
和倍型年龄问题
和倍问题是指已知两个数量之间的和的和与它们的倍数关系,求大小两个数的应用题。
和倍型年龄问题解题规律
这类题跟差倍问题有极其相似之处,除了抓住年龄倍数的关系,我们还可以根据题意,画出线段图,使数量关系一目了然。
和倍问题的数量关系是:
和÷(倍数+1)=小数(1倍数)
小数×倍数=大数和-小数=大数例题3
小红和妈妈的年龄加在一起是40岁,妈妈年龄是小红年龄的4倍,小红和妈妈各多少岁?
解题思路:如果把小红的年龄作为1倍,妈妈的年龄是小红年龄的4倍,即么小红和妈妈的年龄和就相当于小红年龄的1+4=5(倍),即40岁是小红年龄的5倍,这样就可以求出1倍量是多少,也就可以求出几倍量(4倍)是多少了. 
4+1=5         40÷5=8(岁)         8×4=32(岁) 
答:小红的年龄是8岁,妈妈的年龄是32岁。


联系菏泽博智

  • 1对1咨询:
  • 0530-5038112
  • 课程咨询:立即咨询
  • 咨询热线:
  • 0530-5020660
  • Copyright © 2017-2024 菏泽博智教育咨询有限公司 版权所有    鲁ICP备20020203号    鲁公网安备37170202666046 技术支持:千合网络